Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
ltnegcon1
Next ⟩
ltnegcon2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltnegcon1
Description:
Contraposition of negative in 'less than'.
(Contributed by
NM
, 8-Nov-2004)
Ref
Expression
Assertion
ltnegcon1
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
−
A
<
B
↔
−
B
<
A
Proof
Step
Hyp
Ref
Expression
1
renegcl
⊢
A
∈
ℝ
→
−
A
∈
ℝ
2
ltneg
⊢
−
A
∈
ℝ
∧
B
∈
ℝ
→
−
A
<
B
↔
−
B
<
−
−
A
3
1
2
sylan
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
−
A
<
B
↔
−
B
<
−
−
A
4
simpl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
∈
ℝ
5
4
recnd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
∈
ℂ
6
5
negnegd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
−
−
A
=
A
7
6
breq2d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
−
B
<
−
−
A
↔
−
B
<
A
8
3
7
bitrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
−
A
<
B
↔
−
B
<
A