Metamath Proof Explorer


Theorem ltnegcon1

Description: Contraposition of negative in 'less than'. (Contributed by NM, 8-Nov-2004)

Ref Expression
Assertion ltnegcon1 A B A < B B < A

Proof

Step Hyp Ref Expression
1 renegcl A A
2 ltneg A B A < B B < A
3 1 2 sylan A B A < B B < A
4 simpl A B A
5 4 recnd A B A
6 5 negnegd A B A = A
7 6 breq2d A B B < A B < A
8 3 7 bitrd A B A < B B < A