Metamath Proof Explorer


Theorem ltnegcon1d

Description: Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
ltnegcon1d.3 φ A < B
Assertion ltnegcon1d φ B < A

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltnegcon1d.3 φ A < B
4 ltnegcon1 A B A < B B < A
5 1 2 4 syl2anc φ A < B B < A
6 3 5 mpbid φ B < A