Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
ltnegcon2
Next ⟩
leneg
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltnegcon2
Description:
Contraposition of negative in 'less than'.
(Contributed by
Mario Carneiro
, 25-Feb-2015)
Ref
Expression
Assertion
ltnegcon2
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
−
B
↔
B
<
−
A
Proof
Step
Hyp
Ref
Expression
1
renegcl
⊢
B
∈
ℝ
→
−
B
∈
ℝ
2
ltneg
⊢
A
∈
ℝ
∧
−
B
∈
ℝ
→
A
<
−
B
↔
−
−
B
<
−
A
3
1
2
sylan2
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
−
B
↔
−
−
B
<
−
A
4
simpr
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
B
∈
ℝ
5
4
recnd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
B
∈
ℂ
6
5
negnegd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
−
−
B
=
B
7
6
breq1d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
−
−
B
<
−
A
↔
B
<
−
A
8
3
7
bitrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
−
B
↔
B
<
−
A