Metamath Proof Explorer


Theorem ltnegcon2

Description: Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion ltnegcon2 A B A < B B < A

Proof

Step Hyp Ref Expression
1 renegcl B B
2 ltneg A B A < B B < A
3 1 2 sylan2 A B A < B B < A
4 simpr A B B
5 4 recnd A B B
6 5 negnegd A B B = B
7 6 breq1d A B B < A B < A
8 3 7 bitrd A B A < B B < A