Metamath Proof Explorer


Theorem ltnegcon2d

Description: Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
ltnegcon2d.3 φ A < B
Assertion ltnegcon2d φ B < A

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltnegcon2d.3 φ A < B
4 ltnegcon2 A B A < B B < A
5 1 2 4 syl2anc φ A < B B < A
6 3 5 mpbid φ B < A