Metamath Proof Explorer


Theorem ltnegcon2i

Description: Contraposition of negative in 'less than'. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses lt2.1 A
lt2.2 B
Assertion ltnegcon2i A < B B < A

Proof

Step Hyp Ref Expression
1 lt2.1 A
2 lt2.2 B
3 ltnegcon2 A B A < B B < A
4 1 2 3 mp2an A < B B < A