Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
ltnei
Next ⟩
letrii
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltnei
Description:
'Less than' implies not equal.
(Contributed by
NM
, 28-Jul-1999)
Ref
Expression
Hypotheses
lt.1
⊢
A
∈
ℝ
lt.2
⊢
B
∈
ℝ
Assertion
ltnei
⊢
A
<
B
→
B
≠
A
Proof
Step
Hyp
Ref
Expression
1
lt.1
⊢
A
∈
ℝ
2
lt.2
⊢
B
∈
ℝ
3
ltne
⊢
A
∈
ℝ
∧
A
<
B
→
B
≠
A
4
1
3
mpan
⊢
A
<
B
→
B
≠
A