Metamath Proof Explorer


Theorem ltnei

Description: 'Less than' implies not equal. (Contributed by NM, 28-Jul-1999)

Ref Expression
Hypotheses lt.1 A
lt.2 B
Assertion ltnei A < B B A

Proof

Step Hyp Ref Expression
1 lt.1 A
2 lt.2 B
3 ltne A A < B B A
4 1 3 mpan A < B B A