Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
ltneii
Next ⟩
lttri2i
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltneii
Description:
'Greater than' implies not equal.
(Contributed by
Mario Carneiro
, 16-Sep-2015)
Ref
Expression
Hypotheses
lt.1
⊢
A
∈
ℝ
ltneii.2
⊢
A
<
B
Assertion
ltneii
⊢
A
≠
B
Proof
Step
Hyp
Ref
Expression
1
lt.1
⊢
A
∈
ℝ
2
ltneii.2
⊢
A
<
B
3
1
2
gtneii
⊢
B
≠
A
4
3
necomi
⊢
A
≠
B