Metamath Proof Explorer


Theorem ltneii

Description: 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015)

Ref Expression
Hypotheses lt.1 A
ltneii.2 A < B
Assertion ltneii A B

Proof

Step Hyp Ref Expression
1 lt.1 A
2 ltneii.2 A < B
3 1 2 gtneii B A
4 3 necomi A B