Metamath Proof Explorer


Theorem ltnelicc

Description: A real number smaller than the lower bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltnelicc.a φ A
ltnelicc.b φ B *
ltnelicc.c φ C *
ltnelicc.clta φ C < A
Assertion ltnelicc φ ¬ C A B

Proof

Step Hyp Ref Expression
1 ltnelicc.a φ A
2 ltnelicc.b φ B *
3 ltnelicc.c φ C *
4 ltnelicc.clta φ C < A
5 1 rexrd φ A *
6 xrltnle C * A * C < A ¬ A C
7 3 5 6 syl2anc φ C < A ¬ A C
8 4 7 mpbid φ ¬ A C
9 8 intnanrd φ ¬ A C C B
10 elicc4 A * B * C * C A B A C C B
11 5 2 3 10 syl3anc φ C A B A C C B
12 9 11 mtbird φ ¬ C A B