Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
ltnlei
Next ⟩
ltlei
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltnlei
Description:
'Less than' in terms of 'less than or equal to'.
(Contributed by
NM
, 11-Jul-2005)
Ref
Expression
Hypotheses
lt.1
⊢
A
∈
ℝ
lt.2
⊢
B
∈
ℝ
Assertion
ltnlei
⊢
A
<
B
↔
¬
B
≤
A
Proof
Step
Hyp
Ref
Expression
1
lt.1
⊢
A
∈
ℝ
2
lt.2
⊢
B
∈
ℝ
3
2
1
lenlti
⊢
B
≤
A
↔
¬
A
<
B
4
3
con2bii
⊢
A
<
B
↔
¬
B
≤
A