Metamath Proof Explorer


Theorem ltnlei

Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005)

Ref Expression
Hypotheses lt.1 A
lt.2 B
Assertion ltnlei A < B ¬ B A

Proof

Step Hyp Ref Expression
1 lt.1 A
2 lt.2 B
3 2 1 lenlti B A ¬ A < B
4 3 con2bii A < B ¬ B A