Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
ltnr
Next ⟩
leid
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltnr
Description:
'Less than' is irreflexive.
(Contributed by
NM
, 18-Aug-1999)
Ref
Expression
Assertion
ltnr
⊢
A
∈
ℝ
→
¬
A
<
A
Proof
Step
Hyp
Ref
Expression
1
ltso
⊢
<
Or
ℝ
2
sonr
⊢
<
Or
ℝ
∧
A
∈
ℝ
→
¬
A
<
A
3
1
2
mpan
⊢
A
∈
ℝ
→
¬
A
<
A