Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
ltnsym
Next ⟩
ltnsym2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltnsym
Description:
'Less than' is not symmetric.
(Contributed by
NM
, 8-Jan-2002)
Ref
Expression
Assertion
ltnsym
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
B
→
¬
B
<
A
Proof
Step
Hyp
Ref
Expression
1
axlttri
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
B
↔
¬
A
=
B
∨
B
<
A
2
pm2.46
⊢
¬
A
=
B
∨
B
<
A
→
¬
B
<
A
3
1
2
syl6bi
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
B
→
¬
B
<
A