Metamath Proof Explorer


Theorem ltnsym

Description: 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002)

Ref Expression
Assertion ltnsym A B A < B ¬ B < A

Proof

Step Hyp Ref Expression
1 axlttri A B A < B ¬ A = B B < A
2 pm2.46 ¬ A = B B < A ¬ B < A
3 1 2 syl6bi A B A < B ¬ B < A