Metamath Proof Explorer


Theorem ltnsym2

Description: 'Less than' is antisymmetric and irreflexive. (Contributed by NM, 13-Aug-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion ltnsym2 A B ¬ A < B B < A

Proof

Step Hyp Ref Expression
1 ltso < Or
2 so2nr < Or A B ¬ A < B B < A
3 1 2 mpan A B ¬ A < B B < A