Metamath Proof Explorer


Theorem ltnsymi

Description: 'Less than' is not symmetric. (Contributed by NM, 6-May-1999)

Ref Expression
Hypotheses lt.1 A
lt.2 B
Assertion ltnsymi A < B ¬ B < A

Proof

Step Hyp Ref Expression
1 lt.1 A
2 lt.2 B
3 ltnsym A B A < B ¬ B < A
4 1 2 3 mp2an A < B ¬ B < A