Step |
Hyp |
Ref |
Expression |
1 |
|
odd2np1 |
|
2 |
|
halfre |
|
3 |
2
|
a1i |
|
4 |
|
1red |
|
5 |
|
zre |
|
6 |
3 4 5
|
3jca |
|
7 |
6
|
adantr |
|
8 |
|
halflt1 |
|
9 |
|
axltadd |
|
10 |
7 8 9
|
mpisyl |
|
11 |
|
zre |
|
12 |
11
|
adantl |
|
13 |
5 3
|
readdcld |
|
14 |
13
|
adantr |
|
15 |
|
peano2z |
|
16 |
15
|
zred |
|
17 |
16
|
adantr |
|
18 |
|
lttr |
|
19 |
12 14 17 18
|
syl3anc |
|
20 |
10 19
|
mpan2d |
|
21 |
|
zleltp1 |
|
22 |
21
|
ancoms |
|
23 |
20 22
|
sylibrd |
|
24 |
|
halfgt0 |
|
25 |
3 5
|
jca |
|
26 |
25
|
adantr |
|
27 |
|
ltaddpos |
|
28 |
26 27
|
syl |
|
29 |
24 28
|
mpbii |
|
30 |
5
|
adantr |
|
31 |
|
lelttr |
|
32 |
12 30 14 31
|
syl3anc |
|
33 |
29 32
|
mpan2d |
|
34 |
23 33
|
impbid |
|
35 |
|
zcn |
|
36 |
|
1cnd |
|
37 |
|
2cnne0 |
|
38 |
37
|
a1i |
|
39 |
|
muldivdir |
|
40 |
35 36 38 39
|
syl3anc |
|
41 |
40
|
breq2d |
|
42 |
41
|
adantr |
|
43 |
|
2z |
|
44 |
43
|
a1i |
|
45 |
|
id |
|
46 |
44 45
|
zmulcld |
|
47 |
46
|
zcnd |
|
48 |
47
|
adantr |
|
49 |
|
pncan1 |
|
50 |
48 49
|
syl |
|
51 |
50
|
oveq1d |
|
52 |
|
2cnd |
|
53 |
|
2ne0 |
|
54 |
53
|
a1i |
|
55 |
35 52 54
|
divcan3d |
|
56 |
55
|
adantr |
|
57 |
51 56
|
eqtrd |
|
58 |
57
|
breq2d |
|
59 |
34 42 58
|
3bitr4d |
|
60 |
|
oveq1 |
|
61 |
60
|
breq2d |
|
62 |
|
oveq1 |
|
63 |
62
|
oveq1d |
|
64 |
63
|
breq2d |
|
65 |
61 64
|
bibi12d |
|
66 |
59 65
|
syl5ibcom |
|
67 |
66
|
ex |
|
68 |
67
|
adantl |
|
69 |
68
|
com23 |
|
70 |
69
|
rexlimdva |
|
71 |
1 70
|
sylbid |
|
72 |
71
|
3imp |
|