Metamath Proof Explorer


Theorem ltord1

Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ltord.1 x = y A = B
ltord.2 x = C A = M
ltord.3 x = D A = N
ltord.4 S
ltord.5 φ x S A
ltord.6 φ x S y S x < y A < B
Assertion ltord1 φ C S D S C < D M < N

Proof

Step Hyp Ref Expression
1 ltord.1 x = y A = B
2 ltord.2 x = C A = M
3 ltord.3 x = D A = N
4 ltord.4 S
5 ltord.5 φ x S A
6 ltord.6 φ x S y S x < y A < B
7 1 2 3 4 5 6 ltordlem φ C S D S C < D M < N
8 eqeq1 x = C x = D C = D
9 2 eqeq1d x = C A = N M = N
10 8 9 imbi12d x = C x = D A = N C = D M = N
11 10 3 vtoclg C S C = D M = N
12 11 ad2antrl φ C S D S C = D M = N
13 1 3 2 4 5 6 ltordlem φ D S C S D < C N < M
14 13 ancom2s φ C S D S D < C N < M
15 12 14 orim12d φ C S D S C = D D < C M = N N < M
16 15 con3d φ C S D S ¬ M = N N < M ¬ C = D D < C
17 5 ralrimiva φ x S A
18 2 eleq1d x = C A M
19 18 rspccva x S A C S M
20 17 19 sylan φ C S M
21 3 eleq1d x = D A N
22 21 rspccva x S A D S N
23 17 22 sylan φ D S N
24 20 23 anim12dan φ C S D S M N
25 axlttri M N M < N ¬ M = N N < M
26 24 25 syl φ C S D S M < N ¬ M = N N < M
27 4 sseli C S C
28 4 sseli D S D
29 axlttri C D C < D ¬ C = D D < C
30 27 28 29 syl2an C S D S C < D ¬ C = D D < C
31 30 adantl φ C S D S C < D ¬ C = D D < C
32 16 26 31 3imtr4d φ C S D S M < N C < D
33 7 32 impbid φ C S D S C < D M < N