Metamath Proof Explorer


Theorem ltordlem

Description: Lemma for ltord1 . (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ltord.1 x = y A = B
ltord.2 x = C A = M
ltord.3 x = D A = N
ltord.4 S
ltord.5 φ x S A
ltord.6 φ x S y S x < y A < B
Assertion ltordlem φ C S D S C < D M < N

Proof

Step Hyp Ref Expression
1 ltord.1 x = y A = B
2 ltord.2 x = C A = M
3 ltord.3 x = D A = N
4 ltord.4 S
5 ltord.5 φ x S A
6 ltord.6 φ x S y S x < y A < B
7 6 ralrimivva φ x S y S x < y A < B
8 breq1 x = C x < y C < y
9 2 breq1d x = C A < B M < B
10 8 9 imbi12d x = C x < y A < B C < y M < B
11 breq2 y = D C < y C < D
12 eqeq1 x = y x = D y = D
13 1 eqeq1d x = y A = N B = N
14 12 13 imbi12d x = y x = D A = N y = D B = N
15 14 3 chvarvv y = D B = N
16 15 breq2d y = D M < B M < N
17 11 16 imbi12d y = D C < y M < B C < D M < N
18 10 17 rspc2v C S D S x S y S x < y A < B C < D M < N
19 7 18 mpan9 φ C S D S C < D M < N