Metamath Proof Explorer


Theorem ltpiord

Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)

Ref Expression
Assertion ltpiord A 𝑵 B 𝑵 A < 𝑵 B A B

Proof

Step Hyp Ref Expression
1 df-lti < 𝑵 = E 𝑵 × 𝑵
2 1 breqi A < 𝑵 B A E 𝑵 × 𝑵 B
3 brinxp A 𝑵 B 𝑵 A E B A E 𝑵 × 𝑵 B
4 epelg B 𝑵 A E B A B
5 4 adantl A 𝑵 B 𝑵 A E B A B
6 3 5 bitr3d A 𝑵 B 𝑵 A E 𝑵 × 𝑵 B A B
7 2 6 syl5bb A 𝑵 B 𝑵 A < 𝑵 B A B