Metamath Proof Explorer


Theorem ltpsrpr

Description: Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis ltpsrpr.3 C 𝑹
Assertion ltpsrpr C + 𝑹 A 1 𝑷 ~ 𝑹 < 𝑹 C + 𝑹 B 1 𝑷 ~ 𝑹 A < 𝑷 B

Proof

Step Hyp Ref Expression
1 ltpsrpr.3 C 𝑹
2 ltasr C 𝑹 A 1 𝑷 ~ 𝑹 < 𝑹 B 1 𝑷 ~ 𝑹 C + 𝑹 A 1 𝑷 ~ 𝑹 < 𝑹 C + 𝑹 B 1 𝑷 ~ 𝑹
3 1 2 ax-mp A 1 𝑷 ~ 𝑹 < 𝑹 B 1 𝑷 ~ 𝑹 C + 𝑹 A 1 𝑷 ~ 𝑹 < 𝑹 C + 𝑹 B 1 𝑷 ~ 𝑹
4 addcompr A + 𝑷 1 𝑷 = 1 𝑷 + 𝑷 A
5 4 breq1i A + 𝑷 1 𝑷 < 𝑷 1 𝑷 + 𝑷 B 1 𝑷 + 𝑷 A < 𝑷 1 𝑷 + 𝑷 B
6 ltsrpr A 1 𝑷 ~ 𝑹 < 𝑹 B 1 𝑷 ~ 𝑹 A + 𝑷 1 𝑷 < 𝑷 1 𝑷 + 𝑷 B
7 1pr 1 𝑷 𝑷
8 ltapr 1 𝑷 𝑷 A < 𝑷 B 1 𝑷 + 𝑷 A < 𝑷 1 𝑷 + 𝑷 B
9 7 8 ax-mp A < 𝑷 B 1 𝑷 + 𝑷 A < 𝑷 1 𝑷 + 𝑷 B
10 5 6 9 3bitr4i A 1 𝑷 ~ 𝑹 < 𝑹 B 1 𝑷 ~ 𝑹 A < 𝑷 B
11 3 10 bitr3i C + 𝑹 A 1 𝑷 ~ 𝑹 < 𝑹 C + 𝑹 B 1 𝑷 ~ 𝑹 A < 𝑷 B