Metamath Proof Explorer


Theorem ltrec

Description: The reciprocal of both sides of 'less than'. (Contributed by NM, 26-Sep-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltrec A 0 < A B 0 < B A < B 1 B < 1 A

Proof

Step Hyp Ref Expression
1 1red A 0 < A B 0 < B 1
2 simprl A 0 < A B 0 < B B
3 simpll A 0 < A B 0 < B A
4 simplr A 0 < A B 0 < B 0 < A
5 ltmuldiv 1 B A 0 < A 1 A < B 1 < B A
6 1 2 3 4 5 syl112anc A 0 < A B 0 < B 1 A < B 1 < B A
7 3 recnd A 0 < A B 0 < B A
8 7 mulid2d A 0 < A B 0 < B 1 A = A
9 8 breq1d A 0 < A B 0 < B 1 A < B A < B
10 2 recnd A 0 < A B 0 < B B
11 4 gt0ne0d A 0 < A B 0 < B A 0
12 10 7 11 divrecd A 0 < A B 0 < B B A = B 1 A
13 12 breq2d A 0 < A B 0 < B 1 < B A 1 < B 1 A
14 6 9 13 3bitr3d A 0 < A B 0 < B A < B 1 < B 1 A
15 3 11 rereccld A 0 < A B 0 < B 1 A
16 simprr A 0 < A B 0 < B 0 < B
17 ltdivmul 1 1 A B 0 < B 1 B < 1 A 1 < B 1 A
18 1 15 2 16 17 syl112anc A 0 < A B 0 < B 1 B < 1 A 1 < B 1 A
19 14 18 bitr4d A 0 < A B 0 < B A < B 1 B < 1 A