Metamath Proof Explorer


Theorem ltrec1

Description: Reciprocal swap in a 'less than' relation. (Contributed by NM, 24-Feb-2005)

Ref Expression
Assertion ltrec1 A0<AB0<B1A<B1B<A

Proof

Step Hyp Ref Expression
1 gt0ne0 A0<AA0
2 rereccl AA01A
3 1 2 syldan A0<A1A
4 recgt0 A0<A0<1A
5 3 4 jca A0<A1A0<1A
6 ltrec 1A0<1AB0<B1A<B1B<11A
7 5 6 sylan A0<AB0<B1A<B1B<11A
8 recn AA
9 recrec AA011A=A
10 8 9 sylan AA011A=A
11 1 10 syldan A0<A11A=A
12 11 adantr A0<AB0<B11A=A
13 12 breq2d A0<AB0<B1B<11A1B<A
14 7 13 bitrd A0<AB0<B1A<B1B<A