Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
ltrec1
Next ⟩
lerec2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltrec1
Description:
Reciprocal swap in a 'less than' relation.
(Contributed by
NM
, 24-Feb-2005)
Ref
Expression
Assertion
ltrec1
⊢
A
∈
ℝ
∧
0
<
A
∧
B
∈
ℝ
∧
0
<
B
→
1
A
<
B
↔
1
B
<
A
Proof
Step
Hyp
Ref
Expression
1
gt0ne0
⊢
A
∈
ℝ
∧
0
<
A
→
A
≠
0
2
rereccl
⊢
A
∈
ℝ
∧
A
≠
0
→
1
A
∈
ℝ
3
1
2
syldan
⊢
A
∈
ℝ
∧
0
<
A
→
1
A
∈
ℝ
4
recgt0
⊢
A
∈
ℝ
∧
0
<
A
→
0
<
1
A
5
3
4
jca
⊢
A
∈
ℝ
∧
0
<
A
→
1
A
∈
ℝ
∧
0
<
1
A
6
ltrec
⊢
1
A
∈
ℝ
∧
0
<
1
A
∧
B
∈
ℝ
∧
0
<
B
→
1
A
<
B
↔
1
B
<
1
1
A
7
5
6
sylan
⊢
A
∈
ℝ
∧
0
<
A
∧
B
∈
ℝ
∧
0
<
B
→
1
A
<
B
↔
1
B
<
1
1
A
8
recn
⊢
A
∈
ℝ
→
A
∈
ℂ
9
recrec
⊢
A
∈
ℂ
∧
A
≠
0
→
1
1
A
=
A
10
8
9
sylan
⊢
A
∈
ℝ
∧
A
≠
0
→
1
1
A
=
A
11
1
10
syldan
⊢
A
∈
ℝ
∧
0
<
A
→
1
1
A
=
A
12
11
adantr
⊢
A
∈
ℝ
∧
0
<
A
∧
B
∈
ℝ
∧
0
<
B
→
1
1
A
=
A
13
12
breq2d
⊢
A
∈
ℝ
∧
0
<
A
∧
B
∈
ℝ
∧
0
<
B
→
1
B
<
1
1
A
↔
1
B
<
A
14
7
13
bitrd
⊢
A
∈
ℝ
∧
0
<
A
∧
B
∈
ℝ
∧
0
<
B
→
1
A
<
B
↔
1
B
<
A