Metamath Proof Explorer


Theorem ltrec1

Description: Reciprocal swap in a 'less than' relation. (Contributed by NM, 24-Feb-2005)

Ref Expression
Assertion ltrec1 A 0 < A B 0 < B 1 A < B 1 B < A

Proof

Step Hyp Ref Expression
1 gt0ne0 A 0 < A A 0
2 rereccl A A 0 1 A
3 1 2 syldan A 0 < A 1 A
4 recgt0 A 0 < A 0 < 1 A
5 3 4 jca A 0 < A 1 A 0 < 1 A
6 ltrec 1 A 0 < 1 A B 0 < B 1 A < B 1 B < 1 1 A
7 5 6 sylan A 0 < A B 0 < B 1 A < B 1 B < 1 1 A
8 recn A A
9 recrec A A 0 1 1 A = A
10 8 9 sylan A A 0 1 1 A = A
11 1 10 syldan A 0 < A 1 1 A = A
12 11 adantr A 0 < A B 0 < B 1 1 A = A
13 12 breq2d A 0 < A B 0 < B 1 B < 1 1 A 1 B < A
14 7 13 bitrd A 0 < A B 0 < B 1 A < B 1 B < A