Metamath Proof Explorer


Theorem ltrec1d

Description: Reciprocal swap in a 'less than' relation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φ A +
rpaddcld.1 φ B +
ltrec1d.2 φ 1 A < B
Assertion ltrec1d φ 1 B < A

Proof

Step Hyp Ref Expression
1 rpred.1 φ A +
2 rpaddcld.1 φ B +
3 ltrec1d.2 φ 1 A < B
4 1 rpregt0d φ A 0 < A
5 2 rpregt0d φ B 0 < B
6 ltrec1 A 0 < A B 0 < B 1 A < B 1 B < A
7 4 5 6 syl2anc φ 1 A < B 1 B < A
8 3 7 mpbid φ 1 B < A