Metamath Proof Explorer


Theorem ltrecii

Description: The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999)

Ref Expression
Hypotheses ltplus1.1 A
prodgt0.2 B
ltreci.3 0 < A
ltreci.4 0 < B
Assertion ltrecii A < B 1 B < 1 A

Proof

Step Hyp Ref Expression
1 ltplus1.1 A
2 prodgt0.2 B
3 ltreci.3 0 < A
4 ltreci.4 0 < B
5 1 2 ltreci 0 < A 0 < B A < B 1 B < 1 A
6 3 4 5 mp2an A < B 1 B < 1 A