Metamath Proof Explorer


Theorem ltrelpr

Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltrelpr < 𝑷 𝑷 × 𝑷

Proof

Step Hyp Ref Expression
1 df-ltp < 𝑷 = x y | x 𝑷 y 𝑷 x y
2 opabssxp x y | x 𝑷 y 𝑷 x y 𝑷 × 𝑷
3 1 2 eqsstri < 𝑷 𝑷 × 𝑷