Metamath Proof Explorer


Theorem ltrelsr

Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltrelsr < 𝑹 𝑹 × 𝑹

Proof

Step Hyp Ref Expression
1 df-ltr < 𝑹 = x y | x 𝑹 y 𝑹 z w v u x = z w ~ 𝑹 y = v u ~ 𝑹 z + 𝑷 u < 𝑷 w + 𝑷 v
2 opabssxp x y | x 𝑹 y 𝑹 z w v u x = z w ~ 𝑹 y = v u ~ 𝑹 z + 𝑷 u < 𝑷 w + 𝑷 v 𝑹 × 𝑹
3 1 2 eqsstri < 𝑹 𝑹 × 𝑹