Metamath Proof Explorer


Theorem ltrmxnn0

Description: The X-sequence is strictly monotonic on NN0 . (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion ltrmxnn0 A2M0N0M<NAXrmM<AXrmN

Proof

Step Hyp Ref Expression
1 nn0z b0b
2 frmx Xrm:2×0
3 2 fovcl A2bAXrmb0
4 1 3 sylan2 A2b0AXrmb0
5 4 nn0red A2b0AXrmb
6 eluzelre A2A
7 6 adantr A2b0A
8 5 7 remulcld A2b0AXrmbA
9 1 peano2zd b0b+1
10 2 fovcl A2b+1AXrmb+10
11 9 10 sylan2 A2b0AXrmb+10
12 11 nn0red A2b0AXrmb+1
13 eluz2b2 A2A1<A
14 13 simprbi A21<A
15 14 adantr A2b01<A
16 rmxypos A2b00<AXrmb0AYrmb
17 16 simpld A2b00<AXrmb
18 ltmulgt11 AXrmbA0<AXrmb1<AAXrmb<AXrmbA
19 5 7 17 18 syl3anc A2b01<AAXrmb<AXrmbA
20 15 19 mpbid A2b0AXrmb<AXrmbA
21 rmspecnonsq A2A21
22 21 eldifad A2A21
23 22 adantr A2b0A21
24 23 nnred A2b0A21
25 frmy Yrm:2×
26 25 fovcl A2bAYrmb
27 1 26 sylan2 A2b0AYrmb
28 27 zred A2b0AYrmb
29 23 nnnn0d A2b0A210
30 29 nn0ge0d A2b00A21
31 16 simprd A2b00AYrmb
32 24 28 30 31 mulge0d A2b00A21AYrmb
33 24 28 remulcld A2b0A21AYrmb
34 8 33 addge01d A2b00A21AYrmbAXrmbAAXrmbA+A21AYrmb
35 32 34 mpbid A2b0AXrmbAAXrmbA+A21AYrmb
36 rmxp1 A2bAXrmb+1=AXrmbA+A21AYrmb
37 1 36 sylan2 A2b0AXrmb+1=AXrmbA+A21AYrmb
38 35 37 breqtrrd A2b0AXrmbAAXrmb+1
39 5 8 12 20 38 ltletrd A2b0AXrmb<AXrmb+1
40 nn0z a0a
41 2 fovcl A2aAXrma0
42 40 41 sylan2 A2a0AXrma0
43 42 nn0red A2a0AXrma
44 nn0uz 0=0
45 oveq2 a=b+1AXrma=AXrmb+1
46 oveq2 a=bAXrma=AXrmb
47 oveq2 a=MAXrma=AXrmM
48 oveq2 a=NAXrma=AXrmN
49 39 43 44 45 46 47 48 monotuz A2M0N0M<NAXrmM<AXrmN
50 49 3impb A2M0N0M<NAXrmM<AXrmN