Metamath Proof Explorer


Theorem ltrn11at

Description: Frequently used one-to-one property of lattice translation atoms. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses ltrneq2.a A = Atoms K
ltrneq2.h H = LHyp K
ltrneq2.t T = LTrn K W
Assertion ltrn11at K HL W H F T P A Q A P Q F P F Q

Proof

Step Hyp Ref Expression
1 ltrneq2.a A = Atoms K
2 ltrneq2.h H = LHyp K
3 ltrneq2.t T = LTrn K W
4 simp33 K HL W H F T P A Q A P Q P Q
5 simp1 K HL W H F T P A Q A P Q K HL W H
6 simp2 K HL W H F T P A Q A P Q F T
7 simp31 K HL W H F T P A Q A P Q P A
8 eqid Base K = Base K
9 8 1 atbase P A P Base K
10 7 9 syl K HL W H F T P A Q A P Q P Base K
11 simp32 K HL W H F T P A Q A P Q Q A
12 8 1 atbase Q A Q Base K
13 11 12 syl K HL W H F T P A Q A P Q Q Base K
14 8 2 3 ltrn11 K HL W H F T P Base K Q Base K F P = F Q P = Q
15 5 6 10 13 14 syl112anc K HL W H F T P A Q A P Q F P = F Q P = Q
16 15 necon3bid K HL W H F T P A Q A P Q F P F Q P Q
17 4 16 mpbird K HL W H F T P A Q A P Q F P F Q