Metamath Proof Explorer


Theorem ltrn1o

Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrn1o.b B = Base K
ltrn1o.h H = LHyp K
ltrn1o.t T = LTrn K W
Assertion ltrn1o K V W H F T F : B 1-1 onto B

Proof

Step Hyp Ref Expression
1 ltrn1o.b B = Base K
2 ltrn1o.h H = LHyp K
3 ltrn1o.t T = LTrn K W
4 simpll K V W H F T K V
5 eqid LAut K = LAut K
6 2 5 3 ltrnlaut K V W H F T F LAut K
7 1 5 laut1o K V F LAut K F : B 1-1 onto B
8 4 6 7 syl2anc K V W H F T F : B 1-1 onto B