Metamath Proof Explorer


Theorem ltrnat

Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel uses. (Contributed by NM, 25-May-2012)

Ref Expression
Hypotheses ltrnel.l ˙ = K
ltrnel.a A = Atoms K
ltrnel.h H = LHyp K
ltrnel.t T = LTrn K W
Assertion ltrnat K HL W H F T P A F P A

Proof

Step Hyp Ref Expression
1 ltrnel.l ˙ = K
2 ltrnel.a A = Atoms K
3 ltrnel.h H = LHyp K
4 ltrnel.t T = LTrn K W
5 simp3 K HL W H F T P A P A
6 eqid Base K = Base K
7 6 2 atbase P A P Base K
8 6 2 3 4 ltrnatb K HL W H F T P Base K P A F P A
9 7 8 syl3an3 K HL W H F T P A P A F P A
10 5 9 mpbid K HL W H F T P A F P A