Metamath Proof Explorer


Theorem ltrnateq

Description: If any atom (under W ) is not equal to its translation, so is any other atom. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses ltrn2eq.l ˙ = K
ltrn2eq.a A = Atoms K
ltrn2eq.h H = LHyp K
ltrn2eq.t T = LTrn K W
Assertion ltrnateq K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P F Q = Q

Proof

Step Hyp Ref Expression
1 ltrn2eq.l ˙ = K
2 ltrn2eq.a A = Atoms K
3 ltrn2eq.h H = LHyp K
4 ltrn2eq.t T = LTrn K W
5 1 2 3 4 ltrn2ateq K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P F Q = Q
6 5 biimp3a K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P F Q = Q