Metamath Proof Explorer


Theorem ltrncl

Description: Closure of a lattice translation. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrn1o.b B = Base K
ltrn1o.h H = LHyp K
ltrn1o.t T = LTrn K W
Assertion ltrncl K V W H F T X B F X B

Proof

Step Hyp Ref Expression
1 ltrn1o.b B = Base K
2 ltrn1o.h H = LHyp K
3 ltrn1o.t T = LTrn K W
4 simp1l K V W H F T X B K V
5 eqid LAut K = LAut K
6 2 5 3 ltrnlaut K V W H F T F LAut K
7 6 3adant3 K V W H F T X B F LAut K
8 simp3 K V W H F T X B X B
9 1 5 lautcl K V F LAut K X B F X B
10 4 7 8 9 syl21anc K V W H F T X B F X B