Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
ltrncl
Next ⟩
ltrn11
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltrncl
Description:
Closure of a lattice translation.
(Contributed by
NM
, 20-May-2012)
Ref
Expression
Hypotheses
ltrn1o.b
⊢
B
=
Base
K
ltrn1o.h
⊢
H
=
LHyp
⁡
K
ltrn1o.t
⊢
T
=
LTrn
⁡
K
⁡
W
Assertion
ltrncl
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
→
F
⁡
X
∈
B
Proof
Step
Hyp
Ref
Expression
1
ltrn1o.b
⊢
B
=
Base
K
2
ltrn1o.h
⊢
H
=
LHyp
⁡
K
3
ltrn1o.t
⊢
T
=
LTrn
⁡
K
⁡
W
4
simp1l
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
→
K
∈
V
5
eqid
⊢
LAut
⁡
K
=
LAut
⁡
K
6
2
5
3
ltrnlaut
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
→
F
∈
LAut
⁡
K
7
6
3adant3
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
→
F
∈
LAut
⁡
K
8
simp3
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
→
X
∈
B
9
1
5
lautcl
⊢
K
∈
V
∧
F
∈
LAut
⁡
K
∧
X
∈
B
→
F
⁡
X
∈
B
10
4
7
8
9
syl21anc
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
→
F
⁡
X
∈
B