Step |
Hyp |
Ref |
Expression |
1 |
|
ltrncnv.h |
|
2 |
|
ltrncnv.t |
|
3 |
|
eqid |
|
4 |
1 3 2
|
ltrnldil |
|
5 |
1 3
|
ldilcnv |
|
6 |
4 5
|
syldan |
|
7 |
|
simp1 |
|
8 |
|
simp1l |
|
9 |
|
simp1r |
|
10 |
|
simp2l |
|
11 |
|
simp3l |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
12 13 1 2
|
ltrncnvel |
|
15 |
8 9 10 11 14
|
syl112anc |
|
16 |
|
simp2r |
|
17 |
|
simp3r |
|
18 |
12 13 1 2
|
ltrncnvel |
|
19 |
8 9 16 17 18
|
syl112anc |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
12 20 21 13 1 2
|
ltrnu |
|
23 |
7 15 19 22
|
syl3anc |
|
24 |
|
eqid |
|
25 |
24 1 2
|
ltrn1o |
|
26 |
25
|
3ad2ant1 |
|
27 |
24 13
|
atbase |
|
28 |
10 27
|
syl |
|
29 |
|
f1ocnvfv2 |
|
30 |
26 28 29
|
syl2anc |
|
31 |
30
|
oveq2d |
|
32 |
|
simp1ll |
|
33 |
12 13 1 2
|
ltrncnvat |
|
34 |
8 9 10 33
|
syl3anc |
|
35 |
20 13
|
hlatjcom |
|
36 |
32 34 10 35
|
syl3anc |
|
37 |
31 36
|
eqtrd |
|
38 |
37
|
oveq1d |
|
39 |
24 13
|
atbase |
|
40 |
16 39
|
syl |
|
41 |
|
f1ocnvfv2 |
|
42 |
26 40 41
|
syl2anc |
|
43 |
42
|
oveq2d |
|
44 |
12 13 1 2
|
ltrncnvat |
|
45 |
8 9 16 44
|
syl3anc |
|
46 |
20 13
|
hlatjcom |
|
47 |
32 45 16 46
|
syl3anc |
|
48 |
43 47
|
eqtrd |
|
49 |
48
|
oveq1d |
|
50 |
23 38 49
|
3eqtr3d |
|
51 |
50
|
3exp |
|
52 |
51
|
ralrimivv |
|
53 |
12 20 21 13 1 3 2
|
isltrn |
|
54 |
53
|
adantr |
|
55 |
6 52 54
|
mpbir2and |
|