Metamath Proof Explorer


Theorem ltrncnv

Description: The converse of a lattice translation is a lattice translation. (Contributed by NM, 10-May-2013)

Ref Expression
Hypotheses ltrncnv.h H = LHyp K
ltrncnv.t T = LTrn K W
Assertion ltrncnv K HL W H F T F -1 T

Proof

Step Hyp Ref Expression
1 ltrncnv.h H = LHyp K
2 ltrncnv.t T = LTrn K W
3 eqid LDil K W = LDil K W
4 1 3 2 ltrnldil K HL W H F T F LDil K W
5 1 3 ldilcnv K HL W H F LDil K W F -1 LDil K W
6 4 5 syldan K HL W H F T F -1 LDil K W
7 simp1 K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W K HL W H F T
8 simp1l K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W K HL W H
9 simp1r K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F T
10 simp2l K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W p Atoms K
11 simp3l K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W ¬ p K W
12 eqid K = K
13 eqid Atoms K = Atoms K
14 12 13 1 2 ltrncnvel K HL W H F T p Atoms K ¬ p K W F -1 p Atoms K ¬ F -1 p K W
15 8 9 10 11 14 syl112anc K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F -1 p Atoms K ¬ F -1 p K W
16 simp2r K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W q Atoms K
17 simp3r K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W ¬ q K W
18 12 13 1 2 ltrncnvel K HL W H F T q Atoms K ¬ q K W F -1 q Atoms K ¬ F -1 q K W
19 8 9 16 17 18 syl112anc K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F -1 q Atoms K ¬ F -1 q K W
20 eqid join K = join K
21 eqid meet K = meet K
22 12 20 21 13 1 2 ltrnu K HL W H F T F -1 p Atoms K ¬ F -1 p K W F -1 q Atoms K ¬ F -1 q K W F -1 p join K F F -1 p meet K W = F -1 q join K F F -1 q meet K W
23 7 15 19 22 syl3anc K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F -1 p join K F F -1 p meet K W = F -1 q join K F F -1 q meet K W
24 eqid Base K = Base K
25 24 1 2 ltrn1o K HL W H F T F : Base K 1-1 onto Base K
26 25 3ad2ant1 K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F : Base K 1-1 onto Base K
27 24 13 atbase p Atoms K p Base K
28 10 27 syl K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W p Base K
29 f1ocnvfv2 F : Base K 1-1 onto Base K p Base K F F -1 p = p
30 26 28 29 syl2anc K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F F -1 p = p
31 30 oveq2d K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F -1 p join K F F -1 p = F -1 p join K p
32 simp1ll K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W K HL
33 12 13 1 2 ltrncnvat K HL W H F T p Atoms K F -1 p Atoms K
34 8 9 10 33 syl3anc K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F -1 p Atoms K
35 20 13 hlatjcom K HL F -1 p Atoms K p Atoms K F -1 p join K p = p join K F -1 p
36 32 34 10 35 syl3anc K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F -1 p join K p = p join K F -1 p
37 31 36 eqtrd K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F -1 p join K F F -1 p = p join K F -1 p
38 37 oveq1d K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F -1 p join K F F -1 p meet K W = p join K F -1 p meet K W
39 24 13 atbase q Atoms K q Base K
40 16 39 syl K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W q Base K
41 f1ocnvfv2 F : Base K 1-1 onto Base K q Base K F F -1 q = q
42 26 40 41 syl2anc K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F F -1 q = q
43 42 oveq2d K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F -1 q join K F F -1 q = F -1 q join K q
44 12 13 1 2 ltrncnvat K HL W H F T q Atoms K F -1 q Atoms K
45 8 9 16 44 syl3anc K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F -1 q Atoms K
46 20 13 hlatjcom K HL F -1 q Atoms K q Atoms K F -1 q join K q = q join K F -1 q
47 32 45 16 46 syl3anc K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F -1 q join K q = q join K F -1 q
48 43 47 eqtrd K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F -1 q join K F F -1 q = q join K F -1 q
49 48 oveq1d K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W F -1 q join K F F -1 q meet K W = q join K F -1 q meet K W
50 23 38 49 3eqtr3d K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W p join K F -1 p meet K W = q join K F -1 q meet K W
51 50 3exp K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W p join K F -1 p meet K W = q join K F -1 q meet K W
52 51 ralrimivv K HL W H F T p Atoms K q Atoms K ¬ p K W ¬ q K W p join K F -1 p meet K W = q join K F -1 q meet K W
53 12 20 21 13 1 3 2 isltrn K HL W H F -1 T F -1 LDil K W p Atoms K q Atoms K ¬ p K W ¬ q K W p join K F -1 p meet K W = q join K F -1 q meet K W
54 53 adantr K HL W H F T F -1 T F -1 LDil K W p Atoms K q Atoms K ¬ p K W ¬ q K W p join K F -1 p meet K W = q join K F -1 q meet K W
55 6 52 54 mpbir2and K HL W H F T F -1 T