Metamath Proof Explorer


Theorem ltrncnvatb

Description: The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012)

Ref Expression
Hypotheses ltrnatb.b B = Base K
ltrnatb.a A = Atoms K
ltrnatb.h H = LHyp K
ltrnatb.t T = LTrn K W
Assertion ltrncnvatb K HL W H F T P B P A F -1 P A

Proof

Step Hyp Ref Expression
1 ltrnatb.b B = Base K
2 ltrnatb.a A = Atoms K
3 ltrnatb.h H = LHyp K
4 ltrnatb.t T = LTrn K W
5 1 3 4 ltrn1o K HL W H F T F : B 1-1 onto B
6 f1ocnvdm F : B 1-1 onto B P B F -1 P B
7 5 6 stoic3 K HL W H F T P B F -1 P B
8 1 2 3 4 ltrnatb K HL W H F T F -1 P B F -1 P A F F -1 P A
9 7 8 syld3an3 K HL W H F T P B F -1 P A F F -1 P A
10 f1ocnvfv2 F : B 1-1 onto B P B F F -1 P = P
11 5 10 stoic3 K HL W H F T P B F F -1 P = P
12 11 eleq1d K HL W H F T P B F F -1 P A P A
13 9 12 bitr2d K HL W H F T P B P A F -1 P A