Metamath Proof Explorer


Theorem ltrncnvleN

Description: Less-than or equal property of lattice translation converse. (Contributed by NM, 10-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ltrnle.b B=BaseK
ltrnle.l ˙=K
ltrnle.h H=LHypK
ltrnle.t T=LTrnKW
Assertion ltrncnvleN KVWHFTXBYBX˙YF-1X˙F-1Y

Proof

Step Hyp Ref Expression
1 ltrnle.b B=BaseK
2 ltrnle.l ˙=K
3 ltrnle.h H=LHypK
4 ltrnle.t T=LTrnKW
5 simp1l KVWHFTXBYBKV
6 eqid LAutK=LAutK
7 3 6 4 ltrnlaut KVWHFTFLAutK
8 7 3adant3 KVWHFTXBYBFLAutK
9 simp3 KVWHFTXBYBXBYB
10 1 2 6 lautcnvle KVFLAutKXBYBX˙YF-1X˙F-1Y
11 5 8 9 10 syl21anc KVWHFTXBYBX˙YF-1X˙F-1Y