Metamath Proof Explorer


Theorem ltrncnvnid

Description: If a translation is different from the identity, so is its converse. (Contributed by NM, 17-Jun-2013)

Ref Expression
Hypotheses ltrn1o.b B=BaseK
ltrn1o.h H=LHypK
ltrn1o.t T=LTrnKW
Assertion ltrncnvnid KHLWHFTFIBF-1IB

Proof

Step Hyp Ref Expression
1 ltrn1o.b B=BaseK
2 ltrn1o.h H=LHypK
3 ltrn1o.t T=LTrnKW
4 simp3 KHLWHFTFIBFIB
5 1 2 3 ltrn1o KHLWHFTF:B1-1 ontoB
6 5 3adant3 KHLWHFTFIBF:B1-1 ontoB
7 f1orel F:B1-1 ontoBRelF
8 6 7 syl KHLWHFTFIBRelF
9 dfrel2 RelFF-1-1=F
10 8 9 sylib KHLWHFTFIBF-1-1=F
11 cnveq F-1=IBF-1-1=IB-1
12 10 11 sylan9req KHLWHFTFIBF-1=IBF=IB-1
13 cnvresid IB-1=IB
14 12 13 eqtrdi KHLWHFTFIBF-1=IBF=IB
15 14 ex KHLWHFTFIBF-1=IBF=IB
16 15 necon3d KHLWHFTFIBFIBF-1IB
17 4 16 mpd KHLWHFTFIBF-1IB