Metamath Proof Explorer


Theorem ltrncoat

Description: Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel , ltrnat uses. (Contributed by NM, 1-May-2013)

Ref Expression
Hypotheses ltrnel.l ˙ = K
ltrnel.a A = Atoms K
ltrnel.h H = LHyp K
ltrnel.t T = LTrn K W
Assertion ltrncoat K HL W H F T G T P A F G P A

Proof

Step Hyp Ref Expression
1 ltrnel.l ˙ = K
2 ltrnel.a A = Atoms K
3 ltrnel.h H = LHyp K
4 ltrnel.t T = LTrn K W
5 simp1 K HL W H F T G T P A K HL W H
6 simp2l K HL W H F T G T P A F T
7 1 2 3 4 ltrnat K HL W H G T P A G P A
8 7 3adant2l K HL W H F T G T P A G P A
9 1 2 3 4 ltrnat K HL W H F T G P A F G P A
10 5 6 8 9 syl3anc K HL W H F T G T P A F G P A