| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrn1o.b |
|
| 2 |
|
ltrn1o.h |
|
| 3 |
|
ltrn1o.t |
|
| 4 |
|
simpl1 |
|
| 5 |
|
simpl3 |
|
| 6 |
1 2 3
|
ltrn1o |
|
| 7 |
4 5 6
|
syl2anc |
|
| 8 |
|
f1ococnv1 |
|
| 9 |
7 8
|
syl |
|
| 10 |
9
|
coeq2d |
|
| 11 |
|
simpl2 |
|
| 12 |
1 2 3
|
ltrn1o |
|
| 13 |
4 11 12
|
syl2anc |
|
| 14 |
|
f1of |
|
| 15 |
|
fcoi1 |
|
| 16 |
13 14 15
|
3syl |
|
| 17 |
10 16
|
eqtr2d |
|
| 18 |
|
coass |
|
| 19 |
17 18
|
eqtr4di |
|
| 20 |
|
simpr |
|
| 21 |
20
|
coeq1d |
|
| 22 |
|
f1of |
|
| 23 |
|
fcoi2 |
|
| 24 |
7 22 23
|
3syl |
|
| 25 |
21 24
|
eqtrd |
|
| 26 |
19 25
|
eqtrd |
|
| 27 |
|
simpr |
|
| 28 |
27
|
coeq1d |
|
| 29 |
|
simpl1 |
|
| 30 |
|
simpl3 |
|
| 31 |
29 30 6
|
syl2anc |
|
| 32 |
|
f1ococnv2 |
|
| 33 |
31 32
|
syl |
|
| 34 |
28 33
|
eqtrd |
|
| 35 |
26 34
|
impbida |
|