Metamath Proof Explorer


Theorem ltrncoval

Description: Two ways to express value of translation composition. (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses ltrnel.l ˙ = K
ltrnel.a A = Atoms K
ltrnel.h H = LHyp K
ltrnel.t T = LTrn K W
Assertion ltrncoval K HL W H F T G T P A F G P = F G P

Proof

Step Hyp Ref Expression
1 ltrnel.l ˙ = K
2 ltrnel.a A = Atoms K
3 ltrnel.h H = LHyp K
4 ltrnel.t T = LTrn K W
5 simp1 K HL W H F T G T P A K HL W H
6 simp2r K HL W H F T G T P A G T
7 eqid Base K = Base K
8 7 3 4 ltrn1o K HL W H G T G : Base K 1-1 onto Base K
9 5 6 8 syl2anc K HL W H F T G T P A G : Base K 1-1 onto Base K
10 f1of G : Base K 1-1 onto Base K G : Base K Base K
11 9 10 syl K HL W H F T G T P A G : Base K Base K
12 7 2 atbase P A P Base K
13 12 3ad2ant3 K HL W H F T G T P A P Base K
14 fvco3 G : Base K Base K P Base K F G P = F G P
15 11 13 14 syl2anc K HL W H F T G T P A F G P = F G P