Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
ltrncoval
Next ⟩
ltrncnv
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltrncoval
Description:
Two ways to express value of translation composition.
(Contributed by
NM
, 31-May-2013)
Ref
Expression
Hypotheses
ltrnel.l
⊢
≤
˙
=
≤
K
ltrnel.a
⊢
A
=
Atoms
⁡
K
ltrnel.h
⊢
H
=
LHyp
⁡
K
ltrnel.t
⊢
T
=
LTrn
⁡
K
⁡
W
Assertion
ltrncoval
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
P
∈
A
→
F
∘
G
⁡
P
=
F
⁡
G
⁡
P
Proof
Step
Hyp
Ref
Expression
1
ltrnel.l
⊢
≤
˙
=
≤
K
2
ltrnel.a
⊢
A
=
Atoms
⁡
K
3
ltrnel.h
⊢
H
=
LHyp
⁡
K
4
ltrnel.t
⊢
T
=
LTrn
⁡
K
⁡
W
5
simp1
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
P
∈
A
→
K
∈
HL
∧
W
∈
H
6
simp2r
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
P
∈
A
→
G
∈
T
7
eqid
⊢
Base
K
=
Base
K
8
7
3
4
ltrn1o
⊢
K
∈
HL
∧
W
∈
H
∧
G
∈
T
→
G
:
Base
K
⟶
1-1 onto
Base
K
9
5
6
8
syl2anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
P
∈
A
→
G
:
Base
K
⟶
1-1 onto
Base
K
10
f1of
⊢
G
:
Base
K
⟶
1-1 onto
Base
K
→
G
:
Base
K
⟶
Base
K
11
9
10
syl
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
P
∈
A
→
G
:
Base
K
⟶
Base
K
12
7
2
atbase
⊢
P
∈
A
→
P
∈
Base
K
13
12
3ad2ant3
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
P
∈
A
→
P
∈
Base
K
14
fvco3
⊢
G
:
Base
K
⟶
Base
K
∧
P
∈
Base
K
→
F
∘
G
⁡
P
=
F
⁡
G
⁡
P
15
11
13
14
syl2anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
P
∈
A
→
F
∘
G
⁡
P
=
F
⁡
G
⁡
P