Metamath Proof Explorer


Theorem ltrneq

Description: The equality of two translations is determined by their equality at atoms not under co-atom W . (Contributed by NM, 20-Jun-2013)

Ref Expression
Hypotheses ltrne.l ˙=K
ltrne.a A=AtomsK
ltrne.h H=LHypK
ltrne.t T=LTrnKW
Assertion ltrneq KHLWHFTGTpA¬p˙WFp=GpF=G

Proof

Step Hyp Ref Expression
1 ltrne.l ˙=K
2 ltrne.a A=AtomsK
3 ltrne.h H=LHypK
4 ltrne.t T=LTrnKW
5 simp11 KHLWHFTGTpAp˙WKHLWH
6 simp12 KHLWHFTGTpAp˙WFT
7 eqid BaseK=BaseK
8 7 2 atbase pApBaseK
9 8 3ad2ant2 KHLWHFTGTpAp˙WpBaseK
10 simp3 KHLWHFTGTpAp˙Wp˙W
11 7 1 3 4 ltrnval1 KHLWHFTpBaseKp˙WFp=p
12 5 6 9 10 11 syl112anc KHLWHFTGTpAp˙WFp=p
13 simp13 KHLWHFTGTpAp˙WGT
14 7 1 3 4 ltrnval1 KHLWHGTpBaseKp˙WGp=p
15 5 13 9 10 14 syl112anc KHLWHFTGTpAp˙WGp=p
16 12 15 eqtr4d KHLWHFTGTpAp˙WFp=Gp
17 16 3expia KHLWHFTGTpAp˙WFp=Gp
18 pm2.61 p˙WFp=Gp¬p˙WFp=GpFp=Gp
19 17 18 syl KHLWHFTGTpA¬p˙WFp=GpFp=Gp
20 re1tbw2 Fp=Gp¬p˙WFp=Gp
21 19 20 impbid1 KHLWHFTGTpA¬p˙WFp=GpFp=Gp
22 21 ralbidva KHLWHFTGTpA¬p˙WFp=GppAFp=Gp
23 2 3 4 ltrneq2 KHLWHFTGTpAFp=GpF=G
24 22 23 bitrd KHLWHFTGTpA¬p˙WFp=GpF=G