Metamath Proof Explorer


Theorem ltrneq3

Description: Two translations agree at any atom not under the fiducial co-atom W iff they are equal. (Contributed by NM, 25-Jul-2013)

Ref Expression
Hypotheses cdlemd.l ˙ = K
cdlemd.a A = Atoms K
cdlemd.h H = LHyp K
cdlemd.t T = LTrn K W
Assertion ltrneq3 K HL W H F T G T P A ¬ P ˙ W F P = G P F = G

Proof

Step Hyp Ref Expression
1 cdlemd.l ˙ = K
2 cdlemd.a A = Atoms K
3 cdlemd.h H = LHyp K
4 cdlemd.t T = LTrn K W
5 simpl1 K HL W H F T G T P A ¬ P ˙ W F P = G P K HL W H
6 simpl2l K HL W H F T G T P A ¬ P ˙ W F P = G P F T
7 simpl2r K HL W H F T G T P A ¬ P ˙ W F P = G P G T
8 simpl3 K HL W H F T G T P A ¬ P ˙ W F P = G P P A ¬ P ˙ W
9 simpr K HL W H F T G T P A ¬ P ˙ W F P = G P F P = G P
10 1 2 3 4 cdlemd K HL W H F T G T P A ¬ P ˙ W F P = G P F = G
11 5 6 7 8 9 10 syl311anc K HL W H F T G T P A ¬ P ˙ W F P = G P F = G
12 fveq1 F = G F P = G P
13 12 adantl K HL W H F T G T P A ¬ P ˙ W F = G F P = G P
14 11 13 impbida K HL W H F T G T P A ¬ P ˙ W F P = G P F = G