Metamath Proof Explorer


Theorem ltrnfset

Description: The set of all lattice translations for a lattice K . (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses ltrnset.l ˙ = K
ltrnset.j ˙ = join K
ltrnset.m ˙ = meet K
ltrnset.a A = Atoms K
ltrnset.h H = LHyp K
Assertion ltrnfset K C LTrn K = w H f LDil K w | p A q A ¬ p ˙ w ¬ q ˙ w p ˙ f p ˙ w = q ˙ f q ˙ w

Proof

Step Hyp Ref Expression
1 ltrnset.l ˙ = K
2 ltrnset.j ˙ = join K
3 ltrnset.m ˙ = meet K
4 ltrnset.a A = Atoms K
5 ltrnset.h H = LHyp K
6 elex K C K V
7 fveq2 k = K LHyp k = LHyp K
8 7 5 eqtr4di k = K LHyp k = H
9 fveq2 k = K LDil k = LDil K
10 9 fveq1d k = K LDil k w = LDil K w
11 fveq2 k = K Atoms k = Atoms K
12 11 4 eqtr4di k = K Atoms k = A
13 fveq2 k = K k = K
14 13 1 eqtr4di k = K k = ˙
15 14 breqd k = K p k w p ˙ w
16 15 notbid k = K ¬ p k w ¬ p ˙ w
17 14 breqd k = K q k w q ˙ w
18 17 notbid k = K ¬ q k w ¬ q ˙ w
19 16 18 anbi12d k = K ¬ p k w ¬ q k w ¬ p ˙ w ¬ q ˙ w
20 fveq2 k = K meet k = meet K
21 20 3 eqtr4di k = K meet k = ˙
22 fveq2 k = K join k = join K
23 22 2 eqtr4di k = K join k = ˙
24 23 oveqd k = K p join k f p = p ˙ f p
25 eqidd k = K w = w
26 21 24 25 oveq123d k = K p join k f p meet k w = p ˙ f p ˙ w
27 23 oveqd k = K q join k f q = q ˙ f q
28 21 27 25 oveq123d k = K q join k f q meet k w = q ˙ f q ˙ w
29 26 28 eqeq12d k = K p join k f p meet k w = q join k f q meet k w p ˙ f p ˙ w = q ˙ f q ˙ w
30 19 29 imbi12d k = K ¬ p k w ¬ q k w p join k f p meet k w = q join k f q meet k w ¬ p ˙ w ¬ q ˙ w p ˙ f p ˙ w = q ˙ f q ˙ w
31 12 30 raleqbidv k = K q Atoms k ¬ p k w ¬ q k w p join k f p meet k w = q join k f q meet k w q A ¬ p ˙ w ¬ q ˙ w p ˙ f p ˙ w = q ˙ f q ˙ w
32 12 31 raleqbidv k = K p Atoms k q Atoms k ¬ p k w ¬ q k w p join k f p meet k w = q join k f q meet k w p A q A ¬ p ˙ w ¬ q ˙ w p ˙ f p ˙ w = q ˙ f q ˙ w
33 10 32 rabeqbidv k = K f LDil k w | p Atoms k q Atoms k ¬ p k w ¬ q k w p join k f p meet k w = q join k f q meet k w = f LDil K w | p A q A ¬ p ˙ w ¬ q ˙ w p ˙ f p ˙ w = q ˙ f q ˙ w
34 8 33 mpteq12dv k = K w LHyp k f LDil k w | p Atoms k q Atoms k ¬ p k w ¬ q k w p join k f p meet k w = q join k f q meet k w = w H f LDil K w | p A q A ¬ p ˙ w ¬ q ˙ w p ˙ f p ˙ w = q ˙ f q ˙ w
35 df-ltrn LTrn = k V w LHyp k f LDil k w | p Atoms k q Atoms k ¬ p k w ¬ q k w p join k f p meet k w = q join k f q meet k w
36 34 35 5 mptfvmpt K V LTrn K = w H f LDil K w | p A q A ¬ p ˙ w ¬ q ˙ w p ˙ f p ˙ w = q ˙ f q ˙ w
37 6 36 syl K C LTrn K = w H f LDil K w | p A q A ¬ p ˙ w ¬ q ˙ w p ˙ f p ˙ w = q ˙ f q ˙ w