Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
ltrnlaut
Next ⟩
ltrn1o
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltrnlaut
Description:
A lattice translation is a lattice automorphism.
(Contributed by
NM
, 20-May-2012)
Ref
Expression
Hypotheses
ltrnlaut.h
⊢
H
=
LHyp
⁡
K
ltrnlaut.i
⊢
I
=
LAut
⁡
K
ltrnlaut.t
⊢
T
=
LTrn
⁡
K
⁡
W
Assertion
ltrnlaut
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
→
F
∈
I
Proof
Step
Hyp
Ref
Expression
1
ltrnlaut.h
⊢
H
=
LHyp
⁡
K
2
ltrnlaut.i
⊢
I
=
LAut
⁡
K
3
ltrnlaut.t
⊢
T
=
LTrn
⁡
K
⁡
W
4
eqid
⊢
LDil
⁡
K
⁡
W
=
LDil
⁡
K
⁡
W
5
1
4
3
ltrnldil
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
→
F
∈
LDil
⁡
K
⁡
W
6
1
2
4
ldillaut
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
LDil
⁡
K
⁡
W
→
F
∈
I
7
5
6
syldan
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
→
F
∈
I