Metamath Proof Explorer


Theorem ltrnlaut

Description: A lattice translation is a lattice automorphism. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrnlaut.h H = LHyp K
ltrnlaut.i I = LAut K
ltrnlaut.t T = LTrn K W
Assertion ltrnlaut K V W H F T F I

Proof

Step Hyp Ref Expression
1 ltrnlaut.h H = LHyp K
2 ltrnlaut.i I = LAut K
3 ltrnlaut.t T = LTrn K W
4 eqid LDil K W = LDil K W
5 1 4 3 ltrnldil K V W H F T F LDil K W
6 1 2 4 ldillaut K V W H F LDil K W F I
7 5 6 syldan K V W H F T F I