Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
ltrnle
Next ⟩
ltrncnvleN
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltrnle
Description:
Less-than or equal property of a lattice translation.
(Contributed by
NM
, 20-May-2012)
Ref
Expression
Hypotheses
ltrnle.b
⊢
B
=
Base
K
ltrnle.l
⊢
≤
˙
=
≤
K
ltrnle.h
⊢
H
=
LHyp
⁡
K
ltrnle.t
⊢
T
=
LTrn
⁡
K
⁡
W
Assertion
ltrnle
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
∧
Y
∈
B
→
X
≤
˙
Y
↔
F
⁡
X
≤
˙
F
⁡
Y
Proof
Step
Hyp
Ref
Expression
1
ltrnle.b
⊢
B
=
Base
K
2
ltrnle.l
⊢
≤
˙
=
≤
K
3
ltrnle.h
⊢
H
=
LHyp
⁡
K
4
ltrnle.t
⊢
T
=
LTrn
⁡
K
⁡
W
5
simp1l
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
∧
Y
∈
B
→
K
∈
V
6
eqid
⊢
LAut
⁡
K
=
LAut
⁡
K
7
3
6
4
ltrnlaut
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
→
F
∈
LAut
⁡
K
8
7
3adant3
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
∧
Y
∈
B
→
F
∈
LAut
⁡
K
9
simp3l
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
∧
Y
∈
B
→
X
∈
B
10
simp3r
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
∧
Y
∈
B
→
Y
∈
B
11
1
2
6
lautle
⊢
K
∈
V
∧
F
∈
LAut
⁡
K
∧
X
∈
B
∧
Y
∈
B
→
X
≤
˙
Y
↔
F
⁡
X
≤
˙
F
⁡
Y
12
5
8
9
10
11
syl22anc
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
∧
Y
∈
B
→
X
≤
˙
Y
↔
F
⁡
X
≤
˙
F
⁡
Y