Metamath Proof Explorer


Theorem ltrnle

Description: Less-than or equal property of a lattice translation. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrnle.b B = Base K
ltrnle.l ˙ = K
ltrnle.h H = LHyp K
ltrnle.t T = LTrn K W
Assertion ltrnle K V W H F T X B Y B X ˙ Y F X ˙ F Y

Proof

Step Hyp Ref Expression
1 ltrnle.b B = Base K
2 ltrnle.l ˙ = K
3 ltrnle.h H = LHyp K
4 ltrnle.t T = LTrn K W
5 simp1l K V W H F T X B Y B K V
6 eqid LAut K = LAut K
7 3 6 4 ltrnlaut K V W H F T F LAut K
8 7 3adant3 K V W H F T X B Y B F LAut K
9 simp3l K V W H F T X B Y B X B
10 simp3r K V W H F T X B Y B Y B
11 1 2 6 lautle K V F LAut K X B Y B X ˙ Y F X ˙ F Y
12 5 8 9 10 11 syl22anc K V W H F T X B Y B X ˙ Y F X ˙ F Y