Metamath Proof Explorer


Theorem ltrnmw

Description: Property of lattice translation value. Remark below Lemma B in Crawley p. 112. TODO: Can this be used in more places? (Contributed by NM, 20-May-2012) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses ltrnmw.l ˙ = K
ltrnmw.m ˙ = meet K
ltrnmw.z 0 ˙ = 0. K
ltrnmw.a A = Atoms K
ltrnmw.h H = LHyp K
ltrnmw.t T = LTrn K W
Assertion ltrnmw K HL W H F T P A ¬ P ˙ W F P ˙ W = 0 ˙

Proof

Step Hyp Ref Expression
1 ltrnmw.l ˙ = K
2 ltrnmw.m ˙ = meet K
3 ltrnmw.z 0 ˙ = 0. K
4 ltrnmw.a A = Atoms K
5 ltrnmw.h H = LHyp K
6 ltrnmw.t T = LTrn K W
7 simp1 K HL W H F T P A ¬ P ˙ W K HL W H
8 1 4 5 6 ltrnel K HL W H F T P A ¬ P ˙ W F P A ¬ F P ˙ W
9 1 2 3 4 5 lhpmat K HL W H F P A ¬ F P ˙ W F P ˙ W = 0 ˙
10 7 8 9 syl2anc K HL W H F T P A ¬ P ˙ W F P ˙ W = 0 ˙