Metamath Proof Explorer


Theorem ltrnnid

Description: If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom W and not equal to its translation. (Contributed by NM, 24-May-2012)

Ref Expression
Hypotheses ltrneq.b B = Base K
ltrneq.l ˙ = K
ltrneq.a A = Atoms K
ltrneq.h H = LHyp K
ltrneq.t T = LTrn K W
Assertion ltrnnid K HL W H F T F I B p A ¬ p ˙ W F p p

Proof

Step Hyp Ref Expression
1 ltrneq.b B = Base K
2 ltrneq.l ˙ = K
3 ltrneq.a A = Atoms K
4 ltrneq.h H = LHyp K
5 ltrneq.t T = LTrn K W
6 ralinexa p A ¬ p ˙ W ¬ F p p ¬ p A ¬ p ˙ W F p p
7 nne ¬ F p p F p = p
8 7 biimpi ¬ F p p F p = p
9 8 imim2i ¬ p ˙ W ¬ F p p ¬ p ˙ W F p = p
10 9 ralimi p A ¬ p ˙ W ¬ F p p p A ¬ p ˙ W F p = p
11 6 10 sylbir ¬ p A ¬ p ˙ W F p p p A ¬ p ˙ W F p = p
12 1 2 3 4 5 ltrnid K HL W H F T p A ¬ p ˙ W F p = p F = I B
13 11 12 syl5ib K HL W H F T ¬ p A ¬ p ˙ W F p p F = I B
14 13 necon1ad K HL W H F T F I B p A ¬ p ˙ W F p p
15 14 3impia K HL W H F T F I B p A ¬ p ˙ W F p p