Metamath Proof Explorer


Theorem ltrnnidn

Description: If a lattice translation is not the identity, then the translation of any atom not under the fiducial co-atom W is different from the atom. Remark above Lemma C in Crawley p. 112. (Contributed by NM, 24-May-2012)

Ref Expression
Hypotheses ltrnnidn.b B = Base K
ltrnnidn.l ˙ = K
ltrnnidn.a A = Atoms K
ltrnnidn.h H = LHyp K
ltrnnidn.t T = LTrn K W
Assertion ltrnnidn K HL W H F T F I B P A ¬ P ˙ W F P P

Proof

Step Hyp Ref Expression
1 ltrnnidn.b B = Base K
2 ltrnnidn.l ˙ = K
3 ltrnnidn.a A = Atoms K
4 ltrnnidn.h H = LHyp K
5 ltrnnidn.t T = LTrn K W
6 simp1l K HL W H F T F I B P A ¬ P ˙ W K HL
7 hlatl K HL K AtLat
8 6 7 syl K HL W H F T F I B P A ¬ P ˙ W K AtLat
9 simp1 K HL W H F T F I B P A ¬ P ˙ W K HL W H
10 simp2l K HL W H F T F I B P A ¬ P ˙ W F T
11 simp2r K HL W H F T F I B P A ¬ P ˙ W F I B
12 eqid trL K W = trL K W
13 1 3 4 5 12 trlnidat K HL W H F T F I B trL K W F A
14 9 10 11 13 syl3anc K HL W H F T F I B P A ¬ P ˙ W trL K W F A
15 eqid 0. K = 0. K
16 15 3 atn0 K AtLat trL K W F A trL K W F 0. K
17 8 14 16 syl2anc K HL W H F T F I B P A ¬ P ˙ W trL K W F 0. K
18 simpl1 K HL W H F T F I B P A ¬ P ˙ W F P = P K HL W H
19 simpl3 K HL W H F T F I B P A ¬ P ˙ W F P = P P A ¬ P ˙ W
20 simpl2l K HL W H F T F I B P A ¬ P ˙ W F P = P F T
21 simpr K HL W H F T F I B P A ¬ P ˙ W F P = P F P = P
22 2 15 3 4 5 12 trl0 K HL W H P A ¬ P ˙ W F T F P = P trL K W F = 0. K
23 18 19 20 21 22 syl112anc K HL W H F T F I B P A ¬ P ˙ W F P = P trL K W F = 0. K
24 23 ex K HL W H F T F I B P A ¬ P ˙ W F P = P trL K W F = 0. K
25 24 necon3d K HL W H F T F I B P A ¬ P ˙ W trL K W F 0. K F P P
26 17 25 mpd K HL W H F T F I B P A ¬ P ˙ W F P P