| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrnnidn.b |
|
| 2 |
|
ltrnnidn.l |
|
| 3 |
|
ltrnnidn.a |
|
| 4 |
|
ltrnnidn.h |
|
| 5 |
|
ltrnnidn.t |
|
| 6 |
|
simp1l |
|
| 7 |
|
hlatl |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
simp1 |
|
| 10 |
|
simp2l |
|
| 11 |
|
simp2r |
|
| 12 |
|
eqid |
|
| 13 |
1 3 4 5 12
|
trlnidat |
|
| 14 |
9 10 11 13
|
syl3anc |
|
| 15 |
|
eqid |
|
| 16 |
15 3
|
atn0 |
|
| 17 |
8 14 16
|
syl2anc |
|
| 18 |
|
simpl1 |
|
| 19 |
|
simpl3 |
|
| 20 |
|
simpl2l |
|
| 21 |
|
simpr |
|
| 22 |
2 15 3 4 5 12
|
trl0 |
|
| 23 |
18 19 20 21 22
|
syl112anc |
|
| 24 |
23
|
ex |
|
| 25 |
24
|
necon3d |
|
| 26 |
17 25
|
mpd |
|