Metamath Proof Explorer


Theorem ltrnq

Description: Ordering property of reciprocal for positive fractions. Proposition 9-2.6(iv) of Gleason p. 120. (Contributed by NM, 9-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)

Ref Expression
Assertion ltrnq A < 𝑸 B * 𝑸 B < 𝑸 * 𝑸 A

Proof

Step Hyp Ref Expression
1 ltrelnq < 𝑸 𝑸 × 𝑸
2 1 brel A < 𝑸 B A 𝑸 B 𝑸
3 1 brel * 𝑸 B < 𝑸 * 𝑸 A * 𝑸 B 𝑸 * 𝑸 A 𝑸
4 dmrecnq dom * 𝑸 = 𝑸
5 0nnq ¬ 𝑸
6 4 5 ndmfvrcl * 𝑸 B 𝑸 B 𝑸
7 4 5 ndmfvrcl * 𝑸 A 𝑸 A 𝑸
8 6 7 anim12ci * 𝑸 B 𝑸 * 𝑸 A 𝑸 A 𝑸 B 𝑸
9 3 8 syl * 𝑸 B < 𝑸 * 𝑸 A A 𝑸 B 𝑸
10 breq1 x = A x < 𝑸 y A < 𝑸 y
11 fveq2 x = A * 𝑸 x = * 𝑸 A
12 11 breq2d x = A * 𝑸 y < 𝑸 * 𝑸 x * 𝑸 y < 𝑸 * 𝑸 A
13 10 12 bibi12d x = A x < 𝑸 y * 𝑸 y < 𝑸 * 𝑸 x A < 𝑸 y * 𝑸 y < 𝑸 * 𝑸 A
14 breq2 y = B A < 𝑸 y A < 𝑸 B
15 fveq2 y = B * 𝑸 y = * 𝑸 B
16 15 breq1d y = B * 𝑸 y < 𝑸 * 𝑸 A * 𝑸 B < 𝑸 * 𝑸 A
17 14 16 bibi12d y = B A < 𝑸 y * 𝑸 y < 𝑸 * 𝑸 A A < 𝑸 B * 𝑸 B < 𝑸 * 𝑸 A
18 recclnq x 𝑸 * 𝑸 x 𝑸
19 recclnq y 𝑸 * 𝑸 y 𝑸
20 mulclnq * 𝑸 x 𝑸 * 𝑸 y 𝑸 * 𝑸 x 𝑸 * 𝑸 y 𝑸
21 18 19 20 syl2an x 𝑸 y 𝑸 * 𝑸 x 𝑸 * 𝑸 y 𝑸
22 ltmnq * 𝑸 x 𝑸 * 𝑸 y 𝑸 x < 𝑸 y * 𝑸 x 𝑸 * 𝑸 y 𝑸 x < 𝑸 * 𝑸 x 𝑸 * 𝑸 y 𝑸 y
23 21 22 syl x 𝑸 y 𝑸 x < 𝑸 y * 𝑸 x 𝑸 * 𝑸 y 𝑸 x < 𝑸 * 𝑸 x 𝑸 * 𝑸 y 𝑸 y
24 mulcomnq * 𝑸 x 𝑸 * 𝑸 y 𝑸 x = x 𝑸 * 𝑸 x 𝑸 * 𝑸 y
25 mulassnq x 𝑸 * 𝑸 x 𝑸 * 𝑸 y = x 𝑸 * 𝑸 x 𝑸 * 𝑸 y
26 mulcomnq x 𝑸 * 𝑸 x 𝑸 * 𝑸 y = * 𝑸 y 𝑸 x 𝑸 * 𝑸 x
27 24 25 26 3eqtr2i * 𝑸 x 𝑸 * 𝑸 y 𝑸 x = * 𝑸 y 𝑸 x 𝑸 * 𝑸 x
28 recidnq x 𝑸 x 𝑸 * 𝑸 x = 1 𝑸
29 28 oveq2d x 𝑸 * 𝑸 y 𝑸 x 𝑸 * 𝑸 x = * 𝑸 y 𝑸 1 𝑸
30 mulidnq * 𝑸 y 𝑸 * 𝑸 y 𝑸 1 𝑸 = * 𝑸 y
31 19 30 syl y 𝑸 * 𝑸 y 𝑸 1 𝑸 = * 𝑸 y
32 29 31 sylan9eq x 𝑸 y 𝑸 * 𝑸 y 𝑸 x 𝑸 * 𝑸 x = * 𝑸 y
33 27 32 eqtrid x 𝑸 y 𝑸 * 𝑸 x 𝑸 * 𝑸 y 𝑸 x = * 𝑸 y
34 mulassnq * 𝑸 x 𝑸 * 𝑸 y 𝑸 y = * 𝑸 x 𝑸 * 𝑸 y 𝑸 y
35 mulcomnq * 𝑸 y 𝑸 y = y 𝑸 * 𝑸 y
36 35 oveq2i * 𝑸 x 𝑸 * 𝑸 y 𝑸 y = * 𝑸 x 𝑸 y 𝑸 * 𝑸 y
37 34 36 eqtri * 𝑸 x 𝑸 * 𝑸 y 𝑸 y = * 𝑸 x 𝑸 y 𝑸 * 𝑸 y
38 recidnq y 𝑸 y 𝑸 * 𝑸 y = 1 𝑸
39 38 oveq2d y 𝑸 * 𝑸 x 𝑸 y 𝑸 * 𝑸 y = * 𝑸 x 𝑸 1 𝑸
40 mulidnq * 𝑸 x 𝑸 * 𝑸 x 𝑸 1 𝑸 = * 𝑸 x
41 18 40 syl x 𝑸 * 𝑸 x 𝑸 1 𝑸 = * 𝑸 x
42 39 41 sylan9eqr x 𝑸 y 𝑸 * 𝑸 x 𝑸 y 𝑸 * 𝑸 y = * 𝑸 x
43 37 42 eqtrid x 𝑸 y 𝑸 * 𝑸 x 𝑸 * 𝑸 y 𝑸 y = * 𝑸 x
44 33 43 breq12d x 𝑸 y 𝑸 * 𝑸 x 𝑸 * 𝑸 y 𝑸 x < 𝑸 * 𝑸 x 𝑸 * 𝑸 y 𝑸 y * 𝑸 y < 𝑸 * 𝑸 x
45 23 44 bitrd x 𝑸 y 𝑸 x < 𝑸 y * 𝑸 y < 𝑸 * 𝑸 x
46 13 17 45 vtocl2ga A 𝑸 B 𝑸 A < 𝑸 B * 𝑸 B < 𝑸 * 𝑸 A
47 2 9 46 pm5.21nii A < 𝑸 B * 𝑸 B < 𝑸 * 𝑸 A