Metamath Proof Explorer


Theorem ltso

Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997)

Ref Expression
Assertion ltso < Or

Proof

Step Hyp Ref Expression
1 axlttri x y x < y ¬ x = y y < x
2 lttr x y z x < y y < z x < z
3 1 2 isso2i < Or