Metamath Proof Explorer


Theorem ltsonq

Description: 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996) (Revised by Mario Carneiro, 4-May-2013) (New usage is discouraged.)

Ref Expression
Assertion ltsonq < 𝑸 Or 𝑸

Proof

Step Hyp Ref Expression
1 elpqn x 𝑸 x 𝑵 × 𝑵
2 1 adantr x 𝑸 y 𝑸 x 𝑵 × 𝑵
3 xp1st x 𝑵 × 𝑵 1 st x 𝑵
4 2 3 syl x 𝑸 y 𝑸 1 st x 𝑵
5 elpqn y 𝑸 y 𝑵 × 𝑵
6 5 adantl x 𝑸 y 𝑸 y 𝑵 × 𝑵
7 xp2nd y 𝑵 × 𝑵 2 nd y 𝑵
8 6 7 syl x 𝑸 y 𝑸 2 nd y 𝑵
9 mulclpi 1 st x 𝑵 2 nd y 𝑵 1 st x 𝑵 2 nd y 𝑵
10 4 8 9 syl2anc x 𝑸 y 𝑸 1 st x 𝑵 2 nd y 𝑵
11 xp1st y 𝑵 × 𝑵 1 st y 𝑵
12 6 11 syl x 𝑸 y 𝑸 1 st y 𝑵
13 xp2nd x 𝑵 × 𝑵 2 nd x 𝑵
14 2 13 syl x 𝑸 y 𝑸 2 nd x 𝑵
15 mulclpi 1 st y 𝑵 2 nd x 𝑵 1 st y 𝑵 2 nd x 𝑵
16 12 14 15 syl2anc x 𝑸 y 𝑸 1 st y 𝑵 2 nd x 𝑵
17 ltsopi < 𝑵 Or 𝑵
18 sotric < 𝑵 Or 𝑵 1 st x 𝑵 2 nd y 𝑵 1 st y 𝑵 2 nd x 𝑵 1 st x 𝑵 2 nd y < 𝑵 1 st y 𝑵 2 nd x ¬ 1 st x 𝑵 2 nd y = 1 st y 𝑵 2 nd x 1 st y 𝑵 2 nd x < 𝑵 1 st x 𝑵 2 nd y
19 17 18 mpan 1 st x 𝑵 2 nd y 𝑵 1 st y 𝑵 2 nd x 𝑵 1 st x 𝑵 2 nd y < 𝑵 1 st y 𝑵 2 nd x ¬ 1 st x 𝑵 2 nd y = 1 st y 𝑵 2 nd x 1 st y 𝑵 2 nd x < 𝑵 1 st x 𝑵 2 nd y
20 10 16 19 syl2anc x 𝑸 y 𝑸 1 st x 𝑵 2 nd y < 𝑵 1 st y 𝑵 2 nd x ¬ 1 st x 𝑵 2 nd y = 1 st y 𝑵 2 nd x 1 st y 𝑵 2 nd x < 𝑵 1 st x 𝑵 2 nd y
21 ordpinq x 𝑸 y 𝑸 x < 𝑸 y 1 st x 𝑵 2 nd y < 𝑵 1 st y 𝑵 2 nd x
22 fveq2 x = y 1 st x = 1 st y
23 fveq2 x = y 2 nd x = 2 nd y
24 23 eqcomd x = y 2 nd y = 2 nd x
25 22 24 oveq12d x = y 1 st x 𝑵 2 nd y = 1 st y 𝑵 2 nd x
26 enqbreq2 x 𝑵 × 𝑵 y 𝑵 × 𝑵 x ~ 𝑸 y 1 st x 𝑵 2 nd y = 1 st y 𝑵 2 nd x
27 1 5 26 syl2an x 𝑸 y 𝑸 x ~ 𝑸 y 1 st x 𝑵 2 nd y = 1 st y 𝑵 2 nd x
28 enqeq x 𝑸 y 𝑸 x ~ 𝑸 y x = y
29 28 3expia x 𝑸 y 𝑸 x ~ 𝑸 y x = y
30 27 29 sylbird x 𝑸 y 𝑸 1 st x 𝑵 2 nd y = 1 st y 𝑵 2 nd x x = y
31 25 30 impbid2 x 𝑸 y 𝑸 x = y 1 st x 𝑵 2 nd y = 1 st y 𝑵 2 nd x
32 ordpinq y 𝑸 x 𝑸 y < 𝑸 x 1 st y 𝑵 2 nd x < 𝑵 1 st x 𝑵 2 nd y
33 32 ancoms x 𝑸 y 𝑸 y < 𝑸 x 1 st y 𝑵 2 nd x < 𝑵 1 st x 𝑵 2 nd y
34 31 33 orbi12d x 𝑸 y 𝑸 x = y y < 𝑸 x 1 st x 𝑵 2 nd y = 1 st y 𝑵 2 nd x 1 st y 𝑵 2 nd x < 𝑵 1 st x 𝑵 2 nd y
35 34 notbid x 𝑸 y 𝑸 ¬ x = y y < 𝑸 x ¬ 1 st x 𝑵 2 nd y = 1 st y 𝑵 2 nd x 1 st y 𝑵 2 nd x < 𝑵 1 st x 𝑵 2 nd y
36 20 21 35 3bitr4d x 𝑸 y 𝑸 x < 𝑸 y ¬ x = y y < 𝑸 x
37 21 3adant3 x 𝑸 y 𝑸 z 𝑸 x < 𝑸 y 1 st x 𝑵 2 nd y < 𝑵 1 st y 𝑵 2 nd x
38 elpqn z 𝑸 z 𝑵 × 𝑵
39 38 3ad2ant3 x 𝑸 y 𝑸 z 𝑸 z 𝑵 × 𝑵
40 xp2nd z 𝑵 × 𝑵 2 nd z 𝑵
41 ltmpi 2 nd z 𝑵 1 st x 𝑵 2 nd y < 𝑵 1 st y 𝑵 2 nd x 2 nd z 𝑵 1 st x 𝑵 2 nd y < 𝑵 2 nd z 𝑵 1 st y 𝑵 2 nd x
42 39 40 41 3syl x 𝑸 y 𝑸 z 𝑸 1 st x 𝑵 2 nd y < 𝑵 1 st y 𝑵 2 nd x 2 nd z 𝑵 1 st x 𝑵 2 nd y < 𝑵 2 nd z 𝑵 1 st y 𝑵 2 nd x
43 37 42 bitrd x 𝑸 y 𝑸 z 𝑸 x < 𝑸 y 2 nd z 𝑵 1 st x 𝑵 2 nd y < 𝑵 2 nd z 𝑵 1 st y 𝑵 2 nd x
44 ordpinq y 𝑸 z 𝑸 y < 𝑸 z 1 st y 𝑵 2 nd z < 𝑵 1 st z 𝑵 2 nd y
45 44 3adant1 x 𝑸 y 𝑸 z 𝑸 y < 𝑸 z 1 st y 𝑵 2 nd z < 𝑵 1 st z 𝑵 2 nd y
46 1 3ad2ant1 x 𝑸 y 𝑸 z 𝑸 x 𝑵 × 𝑵
47 ltmpi 2 nd x 𝑵 1 st y 𝑵 2 nd z < 𝑵 1 st z 𝑵 2 nd y 2 nd x 𝑵 1 st y 𝑵 2 nd z < 𝑵 2 nd x 𝑵 1 st z 𝑵 2 nd y
48 46 13 47 3syl x 𝑸 y 𝑸 z 𝑸 1 st y 𝑵 2 nd z < 𝑵 1 st z 𝑵 2 nd y 2 nd x 𝑵 1 st y 𝑵 2 nd z < 𝑵 2 nd x 𝑵 1 st z 𝑵 2 nd y
49 45 48 bitrd x 𝑸 y 𝑸 z 𝑸 y < 𝑸 z 2 nd x 𝑵 1 st y 𝑵 2 nd z < 𝑵 2 nd x 𝑵 1 st z 𝑵 2 nd y
50 43 49 anbi12d x 𝑸 y 𝑸 z 𝑸 x < 𝑸 y y < 𝑸 z 2 nd z 𝑵 1 st x 𝑵 2 nd y < 𝑵 2 nd z 𝑵 1 st y 𝑵 2 nd x 2 nd x 𝑵 1 st y 𝑵 2 nd z < 𝑵 2 nd x 𝑵 1 st z 𝑵 2 nd y
51 fvex 2 nd x V
52 fvex 1 st y V
53 fvex 2 nd z V
54 mulcompi r 𝑵 s = s 𝑵 r
55 mulasspi r 𝑵 s 𝑵 t = r 𝑵 s 𝑵 t
56 51 52 53 54 55 caov13 2 nd x 𝑵 1 st y 𝑵 2 nd z = 2 nd z 𝑵 1 st y 𝑵 2 nd x
57 fvex 1 st z V
58 fvex 2 nd y V
59 51 57 58 54 55 caov13 2 nd x 𝑵 1 st z 𝑵 2 nd y = 2 nd y 𝑵 1 st z 𝑵 2 nd x
60 56 59 breq12i 2 nd x 𝑵 1 st y 𝑵 2 nd z < 𝑵 2 nd x 𝑵 1 st z 𝑵 2 nd y 2 nd z 𝑵 1 st y 𝑵 2 nd x < 𝑵 2 nd y 𝑵 1 st z 𝑵 2 nd x
61 fvex 1 st x V
62 53 61 58 54 55 caov13 2 nd z 𝑵 1 st x 𝑵 2 nd y = 2 nd y 𝑵 1 st x 𝑵 2 nd z
63 ltrelpi < 𝑵 𝑵 × 𝑵
64 17 63 sotri 2 nd z 𝑵 1 st x 𝑵 2 nd y < 𝑵 2 nd z 𝑵 1 st y 𝑵 2 nd x 2 nd z 𝑵 1 st y 𝑵 2 nd x < 𝑵 2 nd y 𝑵 1 st z 𝑵 2 nd x 2 nd z 𝑵 1 st x 𝑵 2 nd y < 𝑵 2 nd y 𝑵 1 st z 𝑵 2 nd x
65 62 64 eqbrtrrid 2 nd z 𝑵 1 st x 𝑵 2 nd y < 𝑵 2 nd z 𝑵 1 st y 𝑵 2 nd x 2 nd z 𝑵 1 st y 𝑵 2 nd x < 𝑵 2 nd y 𝑵 1 st z 𝑵 2 nd x 2 nd y 𝑵 1 st x 𝑵 2 nd z < 𝑵 2 nd y 𝑵 1 st z 𝑵 2 nd x
66 60 65 sylan2b 2 nd z 𝑵 1 st x 𝑵 2 nd y < 𝑵 2 nd z 𝑵 1 st y 𝑵 2 nd x 2 nd x 𝑵 1 st y 𝑵 2 nd z < 𝑵 2 nd x 𝑵 1 st z 𝑵 2 nd y 2 nd y 𝑵 1 st x 𝑵 2 nd z < 𝑵 2 nd y 𝑵 1 st z 𝑵 2 nd x
67 50 66 syl6bi x 𝑸 y 𝑸 z 𝑸 x < 𝑸 y y < 𝑸 z 2 nd y 𝑵 1 st x 𝑵 2 nd z < 𝑵 2 nd y 𝑵 1 st z 𝑵 2 nd x
68 ordpinq x 𝑸 z 𝑸 x < 𝑸 z 1 st x 𝑵 2 nd z < 𝑵 1 st z 𝑵 2 nd x
69 68 3adant2 x 𝑸 y 𝑸 z 𝑸 x < 𝑸 z 1 st x 𝑵 2 nd z < 𝑵 1 st z 𝑵 2 nd x
70 5 3ad2ant2 x 𝑸 y 𝑸 z 𝑸 y 𝑵 × 𝑵
71 ltmpi 2 nd y 𝑵 1 st x 𝑵 2 nd z < 𝑵 1 st z 𝑵 2 nd x 2 nd y 𝑵 1 st x 𝑵 2 nd z < 𝑵 2 nd y 𝑵 1 st z 𝑵 2 nd x
72 70 7 71 3syl x 𝑸 y 𝑸 z 𝑸 1 st x 𝑵 2 nd z < 𝑵 1 st z 𝑵 2 nd x 2 nd y 𝑵 1 st x 𝑵 2 nd z < 𝑵 2 nd y 𝑵 1 st z 𝑵 2 nd x
73 69 72 bitrd x 𝑸 y 𝑸 z 𝑸 x < 𝑸 z 2 nd y 𝑵 1 st x 𝑵 2 nd z < 𝑵 2 nd y 𝑵 1 st z 𝑵 2 nd x
74 67 73 sylibrd x 𝑸 y 𝑸 z 𝑸 x < 𝑸 y y < 𝑸 z x < 𝑸 z
75 36 74 isso2i < 𝑸 Or 𝑸