Metamath Proof Explorer


Theorem ltsopi

Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996) (Proof shortened by Mario Carneiro, 10-Jul-2014) (New usage is discouraged.)

Ref Expression
Assertion ltsopi < 𝑵 Or 𝑵

Proof

Step Hyp Ref Expression
1 df-ni 𝑵 = ω
2 difss ω ω
3 omsson ω On
4 2 3 sstri ω On
5 1 4 eqsstri 𝑵 On
6 epweon E We On
7 weso E We On E Or On
8 6 7 ax-mp E Or On
9 soss 𝑵 On E Or On E Or 𝑵
10 5 8 9 mp2 E Or 𝑵
11 df-lti < 𝑵 = E 𝑵 × 𝑵
12 soeq1 < 𝑵 = E 𝑵 × 𝑵 < 𝑵 Or 𝑵 E 𝑵 × 𝑵 Or 𝑵
13 11 12 ax-mp < 𝑵 Or 𝑵 E 𝑵 × 𝑵 Or 𝑵
14 soinxp E Or 𝑵 E 𝑵 × 𝑵 Or 𝑵
15 13 14 bitr4i < 𝑵 Or 𝑵 E Or 𝑵
16 10 15 mpbir < 𝑵 Or 𝑵