Metamath Proof Explorer


Theorem ltsrpr

Description: Ordering of signed reals in terms of positive reals. (Contributed by NM, 20-Feb-1996) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)

Ref Expression
Assertion ltsrpr A B ~ 𝑹 < 𝑹 C D ~ 𝑹 A + 𝑷 D < 𝑷 B + 𝑷 C

Proof

Step Hyp Ref Expression
1 enrer ~ 𝑹 Er 𝑷 × 𝑷
2 erdm ~ 𝑹 Er 𝑷 × 𝑷 dom ~ 𝑹 = 𝑷 × 𝑷
3 1 2 ax-mp dom ~ 𝑹 = 𝑷 × 𝑷
4 df-nr 𝑹 = 𝑷 × 𝑷 / ~ 𝑹
5 ltrelsr < 𝑹 𝑹 × 𝑹
6 ltrelpr < 𝑷 𝑷 × 𝑷
7 0npr ¬ 𝑷
8 dmplp dom + 𝑷 = 𝑷 × 𝑷
9 enrex ~ 𝑹 V
10 df-ltr < 𝑹 = x y | x 𝑹 y 𝑹 z w v u x = z w ~ 𝑹 y = v u ~ 𝑹 z + 𝑷 u < 𝑷 w + 𝑷 v
11 addclpr w 𝑷 v 𝑷 w + 𝑷 v 𝑷
12 11 ad2ant2lr z 𝑷 w 𝑷 v 𝑷 u 𝑷 w + 𝑷 v 𝑷
13 addclpr B 𝑷 C 𝑷 B + 𝑷 C 𝑷
14 13 ad2ant2lr A 𝑷 B 𝑷 C 𝑷 D 𝑷 B + 𝑷 C 𝑷
15 12 14 anim12ci z 𝑷 w 𝑷 v 𝑷 u 𝑷 A 𝑷 B 𝑷 C 𝑷 D 𝑷 B + 𝑷 C 𝑷 w + 𝑷 v 𝑷
16 15 an4s z 𝑷 w 𝑷 A 𝑷 B 𝑷 v 𝑷 u 𝑷 C 𝑷 D 𝑷 B + 𝑷 C 𝑷 w + 𝑷 v 𝑷
17 enreceq z 𝑷 w 𝑷 A 𝑷 B 𝑷 z w ~ 𝑹 = A B ~ 𝑹 z + 𝑷 B = w + 𝑷 A
18 enreceq v 𝑷 u 𝑷 C 𝑷 D 𝑷 v u ~ 𝑹 = C D ~ 𝑹 v + 𝑷 D = u + 𝑷 C
19 eqcom v + 𝑷 D = u + 𝑷 C u + 𝑷 C = v + 𝑷 D
20 18 19 bitrdi v 𝑷 u 𝑷 C 𝑷 D 𝑷 v u ~ 𝑹 = C D ~ 𝑹 u + 𝑷 C = v + 𝑷 D
21 17 20 bi2anan9 z 𝑷 w 𝑷 A 𝑷 B 𝑷 v 𝑷 u 𝑷 C 𝑷 D 𝑷 z w ~ 𝑹 = A B ~ 𝑹 v u ~ 𝑹 = C D ~ 𝑹 z + 𝑷 B = w + 𝑷 A u + 𝑷 C = v + 𝑷 D
22 oveq12 z + 𝑷 B = w + 𝑷 A u + 𝑷 C = v + 𝑷 D z + 𝑷 B + 𝑷 u + 𝑷 C = w + 𝑷 A + 𝑷 v + 𝑷 D
23 addcompr u + 𝑷 B = B + 𝑷 u
24 23 oveq1i u + 𝑷 B + 𝑷 C = B + 𝑷 u + 𝑷 C
25 addasspr u + 𝑷 B + 𝑷 C = u + 𝑷 B + 𝑷 C
26 addasspr B + 𝑷 u + 𝑷 C = B + 𝑷 u + 𝑷 C
27 24 25 26 3eqtr3i u + 𝑷 B + 𝑷 C = B + 𝑷 u + 𝑷 C
28 27 oveq2i z + 𝑷 u + 𝑷 B + 𝑷 C = z + 𝑷 B + 𝑷 u + 𝑷 C
29 addasspr z + 𝑷 u + 𝑷 B + 𝑷 C = z + 𝑷 u + 𝑷 B + 𝑷 C
30 addasspr z + 𝑷 B + 𝑷 u + 𝑷 C = z + 𝑷 B + 𝑷 u + 𝑷 C
31 28 29 30 3eqtr4i z + 𝑷 u + 𝑷 B + 𝑷 C = z + 𝑷 B + 𝑷 u + 𝑷 C
32 addcompr v + 𝑷 A = A + 𝑷 v
33 32 oveq1i v + 𝑷 A + 𝑷 D = A + 𝑷 v + 𝑷 D
34 addasspr v + 𝑷 A + 𝑷 D = v + 𝑷 A + 𝑷 D
35 addasspr A + 𝑷 v + 𝑷 D = A + 𝑷 v + 𝑷 D
36 33 34 35 3eqtr3i v + 𝑷 A + 𝑷 D = A + 𝑷 v + 𝑷 D
37 36 oveq2i w + 𝑷 v + 𝑷 A + 𝑷 D = w + 𝑷 A + 𝑷 v + 𝑷 D
38 addasspr w + 𝑷 v + 𝑷 A + 𝑷 D = w + 𝑷 v + 𝑷 A + 𝑷 D
39 addasspr w + 𝑷 A + 𝑷 v + 𝑷 D = w + 𝑷 A + 𝑷 v + 𝑷 D
40 37 38 39 3eqtr4i w + 𝑷 v + 𝑷 A + 𝑷 D = w + 𝑷 A + 𝑷 v + 𝑷 D
41 22 31 40 3eqtr4g z + 𝑷 B = w + 𝑷 A u + 𝑷 C = v + 𝑷 D z + 𝑷 u + 𝑷 B + 𝑷 C = w + 𝑷 v + 𝑷 A + 𝑷 D
42 21 41 syl6bi z 𝑷 w 𝑷 A 𝑷 B 𝑷 v 𝑷 u 𝑷 C 𝑷 D 𝑷 z w ~ 𝑹 = A B ~ 𝑹 v u ~ 𝑹 = C D ~ 𝑹 z + 𝑷 u + 𝑷 B + 𝑷 C = w + 𝑷 v + 𝑷 A + 𝑷 D
43 ovex z + 𝑷 u V
44 ovex B + 𝑷 C V
45 ltapr f 𝑷 x < 𝑷 y f + 𝑷 x < 𝑷 f + 𝑷 y
46 ovex w + 𝑷 v V
47 addcompr x + 𝑷 y = y + 𝑷 x
48 ovex A + 𝑷 D V
49 43 44 45 46 47 48 caovord3 B + 𝑷 C 𝑷 w + 𝑷 v 𝑷 z + 𝑷 u + 𝑷 B + 𝑷 C = w + 𝑷 v + 𝑷 A + 𝑷 D z + 𝑷 u < 𝑷 w + 𝑷 v A + 𝑷 D < 𝑷 B + 𝑷 C
50 16 42 49 syl6an z 𝑷 w 𝑷 A 𝑷 B 𝑷 v 𝑷 u 𝑷 C 𝑷 D 𝑷 z w ~ 𝑹 = A B ~ 𝑹 v u ~ 𝑹 = C D ~ 𝑹 z + 𝑷 u < 𝑷 w + 𝑷 v A + 𝑷 D < 𝑷 B + 𝑷 C
51 9 1 4 10 50 brecop A 𝑷 B 𝑷 C 𝑷 D 𝑷 A B ~ 𝑹 < 𝑹 C D ~ 𝑹 A + 𝑷 D < 𝑷 B + 𝑷 C
52 3 4 5 6 7 8 51 brecop2 A B ~ 𝑹 < 𝑹 C D ~ 𝑹 A + 𝑷 D < 𝑷 B + 𝑷 C